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Abstract

This paper addresses the control of a continuous-time system with possibly large uncertainty of unknown internal dynamics or external disturbance. A
novel control scheme is proposed to estimate and cancel the system uncertainty effectively so as to enhance disturbance rejection (DR) performance.
Unlike asymptotic analysis with infinite gain in the literature, the estimation transient analysis is carried out for the proposed scheme with a finite esti-
mator gain and the precise error formulas are derived, based on a classical low-order plant description. The control performance associated with a rea-
lizable gain is quantified by tight bounds with respect to the ideal case, which enables easy parameter tuning. The necessary and sufficient condition for
the internal stability of the control system is established, along with a D-decomposition method for determining the complete set of the gain intervals
that could internally stabilize the plant. In the presence of measurement noise, a low-pass filter is introduced to attenuate its adverse effect. Simulations
and semi-realistic experiments are performed to demonstrate the effectiveness of the proposed scheme, which shows evident improvement on DR

performance over the well-known active DR control.
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Introduction

Without loss of generality but for simplicity of exposition, let
us consider a plant described by a second-order model, as
given by Equation (1):

).} :f(yayvu)w) + bOua (l)

where u, y and w are the system input, output and external
disturbance, respectively; f'(y, v, u, w) represents the total sys-
tem uncertainty including the unknown and probably time-
varying system dynamics and external disturbance; and by is
the nominal input gain. Over a long history, researchers in
the control field have been attempting different ways to esti-
mate / and then cancel it with the control action, such that
the resulting system becomes simple and linear for control
design. With the estimation and compensation for f, some
standard linear feedback control schemes can be applied to
meet the desired closed-loop target, which gives the dynamic
feedback linearization in a unified framework.

The active disturbance rejection control (ADRC) (Gao,
2014; Han, 2009) and the disturbance-observer based control
(DOBC) (Chen et al., 2016) are developed for effective distur-
bance rejection (DR) control. These methods can be imple-
mented in the industry applications due to the simple
structure and capability in dealing with model uncertainties,
nonlinearity and external disturbance within a unified frame-
work. The recent success also includes piezoelectric actuators

(Nie et al., 2018) and the lithium-ion battery (Sun et al.,
2020). Rather than using the complex nonlinearity functions
or high gain technologies, adaptive technologies provide
alternative means to improve the DR performance. The adap-
tive control (Astrom and Wittenmark, 1994) determines a
parameterized model for f in real time and updates its control
law according to the latest model, such that the closed-loop
system could behave as desired with no or little change
regardless of how f changes. In Wang et al. (2017), adaptive
technology is used to adjust the controller gain as well as f to
enhance the DR performance in the DR framework. To
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balance the DR and noise tolerance, the adaptive extended
state observer (ESO) was developed in the framework of the
ADRC scheme to deal with the uncertainties and measure-
ment noise (Xue et al., 2015).

The neural control (Ge and Tee, 2006) trains an artificial
neural network with a learning algorithm to approximate f in
real time, after which the controller is designed similarly to
the above principle. Under an adaptive robust control frame-
work, a neural network is designed as an uncertainty compen-
sator to approximate the compound disturbance (Sheng
et al., 2021). In the ADRC control scheme, adaptive backpro-
pagation neural networks are used as a feed-forward inverse
controller for nonlinear function approximation (Liu et al.,
2020). To produce a better convergence in both the estima-
tion and tracking tasks, a differential neural network observer
is used to produce a nonlinear approximation of the matched
perturbation and the unknown states simultaneously in the
transformed coordinates (Salgado et al., 2017). Note that the
stability conditions of these methods were discussed under
various assumptions, which motivates us to investigate rigor-
ous design and analysis in the DR framework.

It deserves particular attention that in the past decade,
there have emerged new control approaches based on ESO
for delay-free (Chen et al., 2013; Guo and Zhao, 2011b, 2012;
Huang and Xue, 2014; Li et al., 2016; Sun et al., 2016; Zhao
and Guo, 2017; Zheng et al., 2012) or time-delay (Hao et al.,
2017; Liu et al., 2017) systems, and many application studies
have appeared (Li et al., 2012; Liu and Li, 2011; Mao et al.,
2018; Wang et al., 2015; Yao et al., 2014) as well. The ESO
regards /" as an extended state variable and exploits the stan-
dard observer theory to estimate the extended state including
the original system state and the above variable. This scheme
is simple to understand and implement while it has the poten-
tial to work against a larger class of uncertainty f* than other
schemes mentioned above. However, the dynamics of the
state estimation error for ESO are not homogeneous but
admit the additional input term related to f, which is further
coupled with this error. Unlike the standard state observer
for which the estimation error goes to zero asymptotically
with a finite observer gain, asymptotic estimation of ./ with
ESO could be achieved only when very restrictive assump-
tions on f are imposed. The observer gain must be infinity
(Zhao and Guo, 2017), and a square wave of disturbance
may fail these assumptions. More critically, due to the fact
that /" is a function of the plant state which is included in the
extended state to be estimated, any assumption on f could
provoke a circular argument in logic and therefore, should be
avoided for technical rigour and practical applicability. To
our best knowledge, there is no study which shows a precise
relationship between a finite observer gain and the transient
performance of the state estimation or plant output. The
design of ESO and the related controller are still left to trial
and error or artificial tuning rules.

In this paper, a novel control scheme is proposed for the
system uncertainty estimation and cancellation with differen-
tiators, which have the salient features: (a) y instead of f is
estimated such that f can be simply obtained from Equation
(1) as f = y — bou, considering that j is obviously related to y
and such a relation is independent of any f and wu. This
enables us to establish a simple, direct and fixed relationship

between j and its estimate, and so is for f and its estimate. As
a result, asymptotic estimation of f is achieved without any
assumption on f and wu; and (b) the above relations enable a
simple yet precise tuning of the finite estimator gain given a
specified estimation error tolerance. For practical application,
an approximate differentiator is adopted to estimate the out-
put derivatives. The contributions of this paper are high-
lighted as follows:

(a) anew DR control scheme is proposed for a linear or
nonlinear system with possibly large uncertainty con-
sisting of unknown internal dynamics or external
disturbance;
rigorous analysis of the system with a finite gain,
which is not addressed in the literature of ESO, is pre-
sented. Particularly, the estimation transient is ana-
lysed for the proposed scheme with a finite estimator
gain and precise error formulae are obtained; and
the necessary and sufficient condition for the internal
stability of the control system is established, along
with a D-decomposition method to determine the
complete set of the internally stabilized gain intervals.

(b)

©

In the rest of the paper, the proposed control scheme is
presented in the second section. Performance analysis is given
in the third section while stability analysis is addressed in the
fourth section. The fifth section shows the simulation and
experimental results. The sixth section concludes the paper.

Proposed control scheme

The proposed control scheme is shown in Figure 1, consisting
of two loops. The inner one is to estimate and cancel the sys-
tem uncertainty f, while the outer loop is to control the
resulting integral plant with state feedback for a desired
closed-loop performance. Note that Lg(s) is a low-pass filter
which is used for noise attenuation and therefore, and this
will be discussed solely in the fifth section where the measure-
ment noise n(f) is considered in simulation and experiment.
Hence, n(¢t) = 0 and L¢(s) = 1 are assumed in other sections
concerned with internal stability and estimation of the control
performance.

Based on the plant model in Figure 1, once the differential
signal y is found in the inner loop, the total uncertainty,
f(7,y,u,w), is obtained directly as f = j — bou. A simple con-
troller for the inner loop, as given by Equation (2):

_—f+uo

2
u= )
reduces the system to Equation (3):

j}%u(% (3)

for which any linear control design method such as a propor-
tional-integral-derivative (PID) controller (Wang et al.,
1999a), linear—quadratic regulator controller (He et al., 2000),
and pole placement (Zhang et al., 2002) can be well adopted.
As a result, a simple choice of the outer loop controller could
be linear state feedback, as given by Equation (4):
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Uy = agr — oy — agy, 4)
u‘(r)l
which, in view of Equation (3), approximately achieves the r(t) + w0+ 1 u@) o (1)
. . —> 0, —> —> —> V= f(.y.uw)+byu =
following overall closed-loop transfer function from the refer- —4 = b,
ence 7 to the output y, as given by Equation (5): Uncertainty pAI0)
estimation and +
g boH cancellation l
Gyrls) = () I

2+ ais+ap’

where two parameters are selected to meet the desired perfor-
mance specifications with the desired closed-loop characteris-
tic polynomial, as given by Equation (6):

als) 28+ ags + a. (6)

Obviously, a key issue of the proposed control scheme lies
with the design of the inner loop, that is, how well j can be
estimated, given only the measured y(¢). Note that the
Laplace transform of y(¢) under a zero initial condition is
sy(s). But the ideal differential operator, D(s) =s, is not
proper and thus cannot be realized physically. It is therefore
replaced by the following practical differential operator, as
given by Equation (8):

sk
D) = — 7 (7
so that we obtain Equation (8):
3(s) = D(s)y(s), (8)

Where a positive constant is k. Similarly, the second derivative
of y(¢) is estimated as given by Equation (9):

(s) = DX(s)y(s). ©)

Thus, y and its estimate are related to each other via
Equations (10) and (11):

$(s) = 02(s)3(s), (10)
where:
k 2
06) = . 0:l5) = &) (1

It follows from Equations (10) and (11) that y(s) = j(s)
when k£ tends to infinity, regardless of /' and u. In fact, it is
seen from Equation (10) that j is not always equal to j. Using
u directly in f =3 — bou with H = 1 will therefore not give
exactlyf = f. Besides, using u directly in Figure 1 with # = 1
will lead to an algebraic loop that may cause a problem for
implementation. To tackle the problem, the input filter H is
chosen as given by Equation (12):

H@=@@=Qf9?

It follows from Figure 1 and Equation (10) that we obtain
Equation (13):

(12)

S (s) = Oa(s)i(s) — Qa(s)bou(s) = Qa(s)f (). (13)

f

i(r)*l o o, 0
+

Linear feedback

a

+T
%

Figure |. Proposed control scheme.

+ A

which exactly inherits the same relationship between j and
in Equation (10). Hence, the estimation error for f goes to
zero when k tends to infinity, regardless of /' and u.

Remark 1: As discussed by Han (2009), the commonly used
tracking differentiator and ESO can be viewed as a differen-
tial estimator to observe the derivative of the system output.
Although their convergence has been well studied (Guo and
Zhao, 2011a, 2011b, 2012), these two methods often involve
additional phase lag in the estimation. The proposed differen-
tial operator D(s) in Equation (7) gives a simple but practical
manner to realize differential estimation. In fact, our scheme
can be simply implemented by the existing technologies. Note
that the proposed D-controller is available in industrial con-
troller products. It approximates the differential operator and
has been widely used in commercial PID controllers for
implementing the derivative action. One can simply cascade a
number of such D-term in place of D(s) in Figure 1, tune the
parameter k based on practical requirements, and finally set
H(s) in Figure 1 according to Equation (7) with the tuned £.
The exact formula to tune & based on the time domain analy-
sis is given in the next section.

Performance analysis

Consider now the estimation performance, that is, its error
transient. Note that the transient solution for a signal in a lin-
ear system has a basic component of ¢!, which can express a
constant, sine, or general exponential function with a proper
choice of A. Thus, suppose y(¢) = . It follows from
Equation (8) that we obtain Equation (14):

f(s): Sk 1
Y s+ks—A"

(14)

whose inverse Laplace transform is given by Equation (15):

5 k

y(t) = m (ke_k' + /\e’\f).

(15)
Note that the exact derivative is given by y(f) = Ae*. The
relative estimation error for y(¢) is then obtained as given by
Equation (16):
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ef(kJr)\)t A ?é 0.

(16)
One sees that
limy ey (1, k) = 0,V¢, |A| € (0, ).
Similarly, it follows from Equation (9) that

'A'(s): sk \* 1
Y s+k) s=A’

whose inverse Laplace transform is given by

G ( SV 2 N

W =) = =
k2/\2 . k4l o
e N CES YN

Since j(f) = A%¢M, a relative estimation error for j(¢) is then
obtained as given by Equation (17):

L 19 — e
ex(t,k) = )%
PR A KRR K
(k+A)?%  (k+A)™2 (k + )22 ’
A0
(17)

It is once again seen that

e (1) A limy_es(t, k) = 0,Vt, |A] € (0, ).

It should be stressed that the formula in Equation (17)
gives a precise estimation error transient rather than a loose
error bound. Hence, it is convenient to tune k& with regard to
a specified error tolerance such as given by Equation (18):

kA + A?

A ;.
ey (k) = limy_wey(t, k) = ——-.
2 (k) k(2. k) (T A7

(18)

For example, letting A = 1 and e;(, k) = % <10%
yields £ = 18.5. The general relationship between e, and & is
depicted in Figure 2.

To address the control performance, suppose that the
uncertainty in  Figure 1 is linear, f(y,y,u,w) =
—a1y — apgy + w, which implies that the plant is equivalently
described by its transfer function model,

bo

Gls)lu(s) + )] = Fo e

y(s) = [u(s) + w(s)].

By viewing Figure 1 as a signal flow graph with n(¢) = 0 and
L¢(s) = 1, Mason’s formula (Franklin et al., 2014) is invoked
to find the transfer function from a signal z; to another z, as
given by Equation (19):

08 ! 3 4
06 H 3 ,

04

HAN

0 20 40 60 80 100

Gy =

= (GiAi)s

> (19)
where G; is the gain (transfer function) of the i-th forward
path from z; to z;; A is the system determinant defined as
given by Equation (20):

A=1=Y"F)+ Y (Fy) =Y, (Fs) + -

F); are the loop gains, F»; are the products of 2 non-touching
loop gains, F5; are products of 3 non-touching loop gains,
and A; is the system determinant when the i-th forward path
is removed from the system. It is readily seen from Figure 1
that there are four loops counted from the most inner one to
the most outer with their loop gains being H(s),
—G(s)D(s)D(s) /by, —a1G(s)D(s)/bo and —aoG(s) /by, respec-
tively. All the four loops share the common path from uq to u
so that they are all touched and there are no non-touching
loops. Thus, the system determinant is obtained as given by
Equation (21):

(20)

_ G(s)D(s)D(s) , a1G(s)D(s) = aoG(s)
A=1-H(s)+ b + b + 5o
_ K . k2s? aks @
(s+k)?  als)(s+k?>  als)s+k) o als)
(21)

where a(s) = s> + ays + ag is the monic denominator of G(s).
Consider the output in response to the setpoint r.
Obviously, one has

Zi (GiA;) = ap/als).

Thus, from r to y the (closed-loop) transfer function is as
given by Equation (22):

ap/a(s)
Gy,(s) [ 1252 ajks 4 e
Grrr 2@ R a(s)(s + k) a(s) (22)
@ (s + k)2

a(s)s(s + 2k) + K252 + ajks(s + k) + ao(s + k)
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Its static gain is G,,-(0) = 1, indicating that the output y will 08
track the set point » of step type asymptotically with no —Cy
steady-state error if the transfer function is stable. 0.7 G, |
Similarly, one can obtain the transfer function from w to y
as given by Equation (23): 0.6
_ bos(s + 2k) 05 —
Gyw(S) = 22 - /
a(s)s(s + 2k) + k2s? + arks(s + k) + ao(s + k) 041\ /
(23)
03" ‘
L. . . . 0 20 40 60 80 100
Its static gain is Gy, (0) = 0, implying the system will reject a k
disturbance of step type asymptotically with no steady-state
output error. Figure 3. Tuning of k to meet the gain specification.
We now turn to transient performance. Let us first con-
sider the limiting case of a very large k. Note that each block
in Figure 1 has a finite frequency response over all frequencies 0.8
even if the gain k tends to infinity, therefore different from ‘ ‘ _gg
high-gain control strategies in the literature. In fact, the loop L o -
transfer function viewed from the block of (1/b¢) in Figure 1 | |
as an equivalent single-loop feedback system is given by 0.6 E """""""""""""""""
05 b
L(s) k2 n k2s? arks o ' 1/ ‘
s)=— —_—,
s+ als)(s+hk)?  als)s k) als) 04
which implies 0.3
0 20 40 60 80 100
k

(a1 —ay)s + (ag — ap)

limy—-L(s) = s2 4 ars + ag

whose frequency response has limited magnitude and phase
over all the frequencies. One sees from Equations (22) and
(23) that the limiting closed-loop transfer functions from two
external inputs are given, respectively, by Equations (24) and
(25):

&)

00 A . —_
G,(s) = limg—e: Gy () (ERrp— (24)
00 A .
G, () = limgeeGy(s) = 0, (25)

for which the respective output transients in time domain can
be easily determined and analysed without further discussion.

A challenging issue is to tune a finite £ for practical imple-
mentation with a prescribed performance specification. Recall
that in control engineering, the gain margin and bandwidth
are often used to measure such a specification. When a finite
gain of k is used rather than an infinite one, the performance
will drop from the ideal case in Equation (24). Suppose that
the degradation is assessed by a gain reduction ratio at a cho-
sen frequency of w. (say, the desired bandwidth) such that we
obtain Equation (26):

|Gy (jooc) (0,1). (26)

| = pe| G0y €

Given a user-specified p,, one can easily determine the corre-
sponding k from Equation (26) as follows. The left-hand side
of Equation (26) is a function of k, while the right-hand side
of Equation (26) is a constant corresponding to a horizontal
line against k. The intersections of these two plots meet

Figure 4. Tuning of k to meet the bandwidth specification.

Equation (26) and thus give solutions for k. For example,
consider Equation (27):

4

G(S):s2+2s+3'

(27)

Let w, = 2 and p, = 0.9. We obtain the solutions of Equation
(26) for this example from Figure 3 as &y = 1 and &, = 14.2.
ky = 14.2 is preferred because a larger gain ensures better esti-
mation transient in general. This choice gives a smoother
magnitude curve nearby (more robust against the model
uncertainty) in view of Figure 3.

Alternatively, a finite gain of & will reduce the closed-loop
bandwidth compared with the ideal one in Equation (24).
Thus, suppose that the degradation is assessed by a band-
width reduction ratio p,, such that we obtain Equation (28):

(Grlipgwo)| = |G we)| € 0.1). (28)

Given a user-specified p,, one can determine the correspond-
ing k from Equation (28) in a similar way to that for Equation
(26). Consider G(s) in Equation (27) again. Let w. =2 and

» = 0.9, so we obtain the solutions of Equation (28) for this
example from Figure 4 as ky = 0.7 and k, = 15.1.

Consider the error between Gy, (s) in Equation (22) and its
limiting case in Equation (24). This error measures the perfor-
mance loss with a ﬁmte gain k from the 1dea1 case of the infi-
nite gain. Define E(w “Gy, (jw)] ) . To assess the
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Figure 5. Plot of |G, (jw)| and )G;’,([w)‘.

performance loss, we approximate G,,(s) with & tuned accord-
ing to Equation (28) by obtaining Equation (29):

Po®c

2
A
G (s)=|———|,
yr( s) = (s + pmwc)

while the ideal case in Equation (24) is re-written as given by
Equation (30):

(29)

Gﬁ@)é(sf;)z. (30)

It follows from algebraic computations that the error between
G, (s) and G, (s) is given by Equation (31):

92 ezt - o0

SR IS T

l_pw
1+p,

If p, = 0.9, then E1( ) =<0.0526, which is less than 10%.
Note that E>(w) = “Gyr(/w ] — (/w) is small in contrast
with £ (o). For example, c0n51der Equ 1on (27) with a speci-
fication of p, = 0.9 and a tuned gain of & = 15.1, it can be
seen from Figure 5 that E)(w) is very small. Since
E(w)<E)(w) + Ez(w), it is concluded that the error bound
for E)(w) in Equation (31) dominates £(w). Hence, the above
formula approximately gives the performance loss (E) in
terms of frequency response magnitude when a finite gain of
k is used. Note that this bound is independent of w, or other
frequencies.

Internal stability

Suppose that a system with scalar signals has » subsystems,
gi(s),i = 1,2, ---,n and p;(s) is the characteristic polynomial
of g;(s). Define the closed-loop characteristic polynomial as

= AT, wils))

Proposition 1 (Wang et al., 1999b). A linear time-invariant
interconnected system with scalar signals is internally stable if

and only if p.(s) has all its roots in the open left half of the
complex plane.

We apply Proposition 1 to the system in Figure 1. The
overall system has four subsystems with dynamics whose
characteristic polynomials are a(s) for the plant, (s + k) for
D(s), (s + k) for D(s), and (s + k)* for H(s), respectively.
There are four loops as discussed in the preceding section.
The closed-loop characteristic polynomial is given by
Equation (32):

=a(s)(s + k)*

Pe(s)
[1 _H(s) + G(S)Db(:")D(s) alG(;(?D(s) N aoli(s)}

=(s+k)* {a(s)s(s + 2k) + k% + arks(s + k) + aols + k)z].
(32)

+

The factor of p.; (s) 2 (s + k) acts like the observer polyno-
mial which is stable for any k> 0. Thus, p.(s) is stable if and
only if

Pea(s) = a(s)s(s + 2k) + k25> + ayks(s + k) + ao(s + k)2,

is stable.

The perturbation analysis is carried out as follows to deter-
mine the root distribution of p,(s) when & tends to infinity.
Let ¢ = 1/k >0 and consider the resulting Equation (33):

e2s*[a(s) + ap] + es[2a(s) + ays + 2a0) + a(s) =0, (33)
where «a(s) 2Pt as+ap = (s + w.)* is the previously
defined desired closed-loop characteristic polynomial. In the
limiting case of ¢ — 0, the quartic equation degenerates to a
quadratic one, a(s) = 0, with the desired solutions at —w,
that could be specified by the user. Substituting a regular per-
turbation series, Equation (34):

s(e) =s0 + 5186+ 5262+ -, (34)
into Equation (33) and equalizing the coefficients of the same
powers of ¢ on both sides yields

S0 = — We, 51 — — So(a() + OL())/(ZS‘() + (e3] + 20[15‘()), LR
The solution series approaches the stable ones at — w., and
thus there exists ¢ = ¢; >0 such that these two finit% roots
of p.2(s) are in the left half plane for e<e;, ork >k, = 1/¢.

The other two roots of p.(s) could be found by singular
perturbation analysis. To track these two roots which may
escape to infinity when ¢ — 0, we define a rescaled variable,
s = z/(¢)?. Substituting z into Equation (33) yields Equation
(35):

Z4

+ (are? +2¢71) 7
+ [(ap + @) + (2ay + ay)e? ! + 24722
+

[(200 + Zao) 391 + g F3q Z]Z + a084 2= 0.

(35)

Setting ¢ = 1 gives rise to Equation (36):
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2+ (e +2)2 + (a0 + a)e + (2a1 + ay)e + 1] (36)
+ [(an + 2a0)82 + oqs]z + ape? = 0.
Letting a singular perturbation series be
z(e) = zo + zi& + 262 + --- and equalizing the coefficients of
zero power of & on both sides of Equation (36) yields
Equation (37):
(3 + 220 + 1) = 0. (37)
Its two solutions at the origin correspond to what has been
found before from regular perturbation: they are finite in the
origin scale (s) but collapse to zero in the limit of the re-scaled
z. We are only interested in the other two solutions of
Equation (37) located at zy = — 1. Computing the first few
terms in the series z(¢) and recovering the original scale x
yield the other two solutions of Equation (33) as

s@) =2 bz fzet e
&

Such a solution series approaches the stable one at
z9/¢ = — 1/¢, and thus there exists ¢ = & >0 such that these
two roots are also in the left half plane for e <e;.

In view of the above analysis, all the four solutions of
Equation (33) are in the left half plane for e <¢&* EN min(gy, &).
Equivalently, all the four roots of Equation (32) are in the left
half plane for k> k* 2 1/¢*. We thus have the following
theorem.

Theorem 1. The system in Figure 1 is internally stable if p.(s)
in Equation (32) is a stable polynomial. Specifically, there is a
k* > 0 such that the system is internally stable for all £ > k*.

The exact gain intervals of k for closed-loop stability can
be determined by the D-decomposition method (Le et al.,
2015), which is illustrated as follows.

Example 1. Consider the stable plant in Equation (27) with
a(s) = s> + 25 + 3. Set the desired closed-loop characteristic
polynomial a(s) = s> + 4s + 4 in (6). We have

pea(s) = a(s)s(s + 2k) + k25> + arks(s + k) + ao(s + k)*
=s'+ (2k +2)s* + (K + 8k + 7)s* + (4k* + 14k)s + 4k>.

Let s = jw. Separating the real and imaginary parts give a pair
of equations:

o' — (K + 8k + 7)o’ + 4k* = 0,
— 2k +2)w® + (4K + 14k)ow = 0.

Their solutions, (w, k), are computed numerically, which is
unique at £ = 0. The solution divides real £ to two intervals:
k<0 and £ > 0. Taking one point in each interval, one easily
finds that the system is unstable for £ = — 1 but stable for
k = 1. It is therefore concluded that the system is stable only
for k> 0. The root loci with regards to k>0 are computed
and shown in Figure 6, demonstrating that all the roots are in
the left half plane. The interval of & for the closed-loop stabi-
lity is very large with £k > k* = 0.

. e

Lk
P KR FHHTET
****%***%******%%**%
*%

-15
-50 -40 -30 -20 -10 0

Re

Figure 6. Root locus for Example |.

The design procedure is summarized as follows:

Step 1. specify w. for the desired closed-loop model
Equation (5);

Step 2: conduct stability analysis by Theorem 1 to deter-
mine the stabilizing gain internal, (k*,); and

Step 3: select a suitable estimator gain k& with the transient
analysis with a finite gain k>k" by specifying p, in
Equation (26) or p,, in Equation (28).

Remark 2: In its discrete time version, our new scheme will
predict future output in two steps ahead instead of y. It
should be pointed out that in this era of big data, huge data
are available and data mining techniques have evolved to high
standards with wide successful applications. And this trend is
likely to continue or even accelerate. Therefore, it is expected
that the prediction-based schemes will have huge potentials
for technical development and practical applications.

Simulation examples

Example 2. Consider the following stable plant with a
zero,

S5s +1

O = o2 1125+ 1

There are a unit step change in the reference r at = 0 (s) and
a step disturbance at ¢ = 50 (s), w(¢) =—10- 1(¢ — 50). To
make a fair comparison with the ESO/ADRC method (Gao,
2006, 2014), we take by = 0.02 and k = 2 for the proposed
scheme, while by = 0.02 and wy =2 are used for ADRC
according to the guidelines given therein, so that both have
the same desired estimation dynamics. Furthermore, both
schemes are designed with the state feedback to achieve the
same target closed-loop characteristic polynomial with
w, = 0.5. The simulation results are given in Figure 7. It is
seen that while the reference tracking performance is similar,
an obvious improvement on DR is obtained with the pro-
posed method, owing to: (a) the guaranteed uncertainty esti-
mation transient as discussed in the third section, which does
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Figure 7. Nominal response for Example 2.

not exist for ADRC; and (b) lower-order estimation, that is,
the second-order of the estimator-controller compared with
the third-order of the observer-controller of ADRC with an
extended state variable, therefore leading to faster dynamics
based on the same closed-loop system poles.

To test the robustness in the presence of modelling error,
suppose that the plant gain, by, is actually 50% smaller than
that of the model used in the control design. Figure 8 shows
the simulation results. It is seen that the proposed method well
maintains robust stability in contrast with ADRC.

To demonstrate the robustness in the presence of measure-
ment noise, the output is corrupted by white noise n(¢) with
the noise-to-signal ratio of 10%, as shown in Figure 1. With
the noisy output, a low-pass filter L¢(s) in Figure 1 is taken in
the form of

1
ns + 1

Lf(S)

b}

where 7 is a tuning parameter, which in this case is set as
n = 0.3. The others are identical with the above design. The
control results are depicted in Figure 9. It is seen that the out-
put response remains almost the same as the nominal case,
except for minor high-frequency fluctuations due to noise,
which occur in both designs.

Example 3. Consider the following unstable and nonlinear
plant (Huang and Xue, 2014; Nie et al., 2020) with

Xp1 (1) = xp2 (1)
xpz(t) zf(xpl,po, d, t) + boL{(l‘)
y(t) = xpl(t)

Wheref(xpl,xpz,d, t) = 85in(80xp1 + 0.0171-) + 10x,0 + w(?) is
the unknown total disturbance, w(¢) = 103 - 1(z — 2.5) is the
external disturbance and the input gain is by = 1.5. There is a
step change in the reference » = 10 - 1(¢) and a disturbance
w(t) at t = 10s. To make a fair comparison with the recently
developed ADRC method (Tan and Fu, 2016), we take
w, =10, by = 1.5 and k = 100 for the proposed scheme, and
w. =10, by = 1.5 and w, = 100 for ADRC (Tan and Fu,
2016) according to the guidelines given therein. The control
results are shown in Figure 10. It is again seen that obviously
better DR is obtained with the proposed scheme.

Suppose that the process gain is actually 50% larger than
that of the model used in the controller design. The perturbed
system response is shown in Figure 11. It is once again seen
that the proposed method well maintains the control robust-
ness and system stability.

Experimental verification

Consider an electrical signal amplifier made by Tsinghua Ltd.
(product no. XMN-2) with a control computer, as shown in
Figure 12. This plant has an integral function to amplify the
magnitude of the input signal while maintaining the signal fre-
quency. The main components include a complementary
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Figure 11.
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Figure 12. Experimental set up.
metal-oxide—semiconductor operational amplifier (OP07) Conclusions

with a gain range of [0, 10], a resistor—capacitor unit of inte-
gral function with R = 2.5(mQ) and C = 8(uF), and an alter-
nating current power source of S0W. A 32-bit data acquisition
card made by TAIDI Ltd (product no. PCI2013) is used for
analogue-to-digital and digital-to-analogue conversions.

To amplify a sinusoidal signal with amplitude 4y = 0.5
and frequency 0.025Hz to the amplitude A, = 2 along with
the same frequency, the transfer function of the signal ampli-
fier was configured as

5

Gls) = s(5s+ 1)

To perform an experimental test under a load disturbance,
a square wave type disturbance with a magnitude of -5 and
width of 10 seconds is added to the amplifier input at # = 50 s
. For a fair comparison, we take w. =2, by = 1 and k = 5 in
the proposed control scheme, and w, = 2, by = 1, and wy = 5
for the recently developed ADRC method (Tan and Fu, 2016)
according to the guidelines given therein. The experiment was
conducted on each scheme, respectively. The control results
are shown in Figure 13. It is seen that the proposed method
well tracks the reference signal, while the DR performance is
evidently improved with respect to both the disturbance
response peak and recovering time, compared with the
ADRC method (Tan and Fu, 2016).

A novel control scheme has been developed in this paper for
a continuous-time system with possibly large uncertainty aris-
ing from unknown internal dynamics or external distur-
bances. The output derivatives are estimated by realizable
differentiators with finite gains so as to track and cancel the
uncertainty faster than ESO. The new scheme enables rigor-
ous analysis of the system with a finite gain, which is not
addressed in the literature on ESO or other control schemes.
In particular, the estimation transient is analysed for the pro-
posed scheme with a finite estimator gain and the precise
error formulae are obtained. The control performance associ-
ated with realizable gains is quantified by tight bounds with
respect to the ideal case. The necessary and sufficient condi-
tion for the internal stability of the control system is estab-
lished, along with a D-decomposition method to determine
the complete set of the gain intervals which could internally
stabilize the plant. Finally, the proposed scheme has been
tested via simulation examples and an electrical signal ampli-
fier. The results demonstrate significant improvement on DR
performance over the well-recognized ADRC method. The
future research directions include, but are not limited to the
extension of the proposed scheme to time delay systems,
internal stability analysis of nonlinear systems of the scheme,
robust design and stability analysis for plant order uncertain-
ties, control performance design and analysis with input con-
straint, and better ways to approximate differentiators.
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Figure 13. Experimental results.
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