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Abstract. Financial time series prediction is one of the most complex and challenging 

problems in both AI and finance engineering. In our research, we proposed a Hybrid Chaotic 

Oscillatory Neural Network (HCONN) model by replacing the traditional sigmoid-based 

activation function with chaotic oscillatory activation function, which provides significant 

performance in the global minimum convergence through the application of Adaptive Moment 

Estimation optimizer. In addition, by integrating the latest R&D on Quantum Finance Theory 

(QFT) and its Quantum Price Level (QPL) as the deep features’ extraction, we add the daily 8 

nearest QPLs together with the time series price variables as the input of our HCONN.  In 

terms of system implementation, 12 different forex products including the AUDCHF, 

AUDUSD, CADCHF, EURAUD, EURCHF, EURGBP, EURUSD, GBPAUD, GBPCAD, 

GBPUSD, USDCAD and USDCHF are used. System performance results reveal that HCONN 

outperforms other financial models including: Feedforward Backpropagation Neural Network 

(FFBPN) and Chaotic Oscillatory Neural Network (CONN) in terms of training performance 

and forecast accuracy.  

1. Introduction 

 Nowadays, one of the major areas for artificial intelligence (AI) applied in finance is the analysis and 

prediction of the financial time series, which is also the trend and the hottest topic for many decades in 

both financial industry and academia. In the past decades, AI tools such as machine learning and deep 

learning, are popularly utilized in financial time series analysis and forecasting, which have also been 

proved with high degree of validity and correctness [1]. 

 In general, prediction of financial instrument can be categorised into two related directions based on 

the scope we observe the market: long-term market trend prediction and short-term price prediction. In 

long-term trend prediction, we try to predict the future trend of the market movement according to the 

selected financial variables such as technical indicators in a certain previous trading day timeframe. In 

the short-term prediction, we try to predict the price in the future day based on the previous several 

days price data. These two kinds of prediction are tightly related with each other in finance, the long-

term market trend prediction provides the direction for the short-term prediction. On the other hand, 

short-term prediction can be considered as a kind of microscopic analysis of the long-term prediction.  

 For both kinds of prediction in financial time series data, the essence is that we construct a learning 

algorithm model which could learn and extract some key patterns from the large volume of the past 

financial time series. Then based on these patterns and current financial time series, we apply machine 

learning algorithms to do the pattern matching or so-called prediction for future market movement. 
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 In machine learning perspective, Artificial Neural Networks (ANN) and Deep Neural Networks 

(DNN) are commonly used on financial time series prediction. In summary, ANN is a kind of 

simulation of the human brain’s operation by simulating the connection among various neurons in the 

human brain. The neural dynamics are represented by the regulating of the weights between neurons 

and transfer of information by means of activation function. Through network training, ANNs can 

learn complex patterns and perform various classification and even prediction operations [2]. In short, 

DNN can be considered as a kind of extension of ANN. In terms of network structure, DNN possesses 

more complex hidden layers and neural dynamics, which believes can be used to tackle with more 

complex problem, financial prediction for example [3].  

With the development of neural networks, the architecture of contemporary neural networks is no 

longer limited in the fully connected neural network structure. Other neural networks structure such as 

Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN) and Generative 

Adversarial Networks (GAN) are gradually demonstrating their powerful capabilities in various fields 

of application. Specially, in finance, recurrent neural networks which intuitively accept the time series 

as input, have gradually become the most popular neural networks in the financial industry and 

academia. 

 In this paper, we proposed an integrated financial prediction system called Hybrid Chaotic 

Oscillatory Neural Network (HCONN), which integrates the Chaotic Oscillatory Neural Network 

(CONN) and Quantum Price Levels (QPL) from the latest research on Quantum Finance Theory (QFT) 

[4], which are considered as the intrinsic properties of the financial markets. From the implementation 

perspective, HCONN takes the nearest 8 QPLs and the past 9 trading-days timeseries of open, high, 

low and closing prices as inputs to forecast the next-day high and low prices. For system testing, 2048 

trading-day timeseries from 5 Oct 2012 to 12 May 2019 are used, together with 12 major forex 

products include: AUDCHF, AUDUSD, CADCHF, EURAUD, EURCHF, EURGBP, EURUSD, 

GBPAUD, GBPCAD, GBPUSD, USDCAD and USDCHF for system implementation. For 

performance analysis, HCONN is compared with Feedforward Backpropagation Neural Network 

(FFBPN) and Chaotic Neural Network (without QPL) as benchmarks for training performance and 

forecast accuracy performance testing.  

2. Literature Review 

Since using neural network to do the forecasting for the financial time series is a popular and 

developing topic in the application of neural network, there are substantial number of scholars and 

studies working in this field. In this literature review, the authors will attempt to summarize those 

significant works on the financial time series data in the past few years. 

2.1. Quantum Finance Theory (QFT) 

In order to extract the deep features of each financial time series data, we apply the author’s latest 

research on Quantum Price Levels (QPL) of the Quantum Finance Theory (QFT)[4]. By modelling the 

market movements in the secondary financial market using quantum anharmonic oscillator (QAHO), 

and through the solving of Quantum Finance Schrödinger Equation (QFSE), we calculate the energy 

levels for the Quantum Financial Particle (QFP) in each financial market directly – the QPL. 

According to the QFT, QPL could be used in both financial forecasting and trading strategy design as 

analogue to the resistance and support lines in technical analysis. As compared with traditional 

features we used in the prediction problem, QPL reflects the nature of the particle's dynamic, which 

sheds new lights in the exploration of the intrinsic characteristics of the QFPs in financial markets.  

2.2. Chaotic Oscillatory Neural Network (CONN) 

Due to the highly degree of chaotic and complex fluctuation of financial markets, they are difficult to 

be modelled successfully by traditional neural networks. According to our experiment, by using the 

traditional activation function in neural network such as ReLU, tanh and sigmoid functions, the fitting 

results for the financial time series are not so promising, so we introduce the Lee-oscillator model [5]. 
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Lee-oscillator is a chaotic neural oscillator with remarkable transient-chaotic property which provides 

a perfect solution to serve as Bifurcation Transfer Unit (BTU) to model highly chaotic and complex 

problems such as financial timeseries prediction [6].  

3. Methodology 

From the system framework perspective, HCONN is the integration of: 1) 8 closest Quantum Price 

Levels (QPL) evaluated from quantum finance model; 2) 9-day time series of the financial products; 3) 

Chaotic Oscillatory Neural Network (CONN) model with the adoption of Lee-oscillators as model 

framework.  

3.1. Quantum Price Levels (QPL) 

With the continuous development of the econ-physics in the recent years, Quantum Finance Theory 

(QFT) based on Quantum Mechanics and Quantum Field Theory to extract the deep features of the 

motion of the quantum financial particles (QFP) become one of the hottest topics in Fintech and 

quantum computing technology. Based on the author’s latest research on QFT, the Quantum Finance 

Schrödinger Equation (QFSE) is given by [5]: 

 [
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  )] ( )    ( ) (1) 

 In QFSE, the first term denotes the kinetic energy term, and the second term represents the potential 

energy term of the quantum finance market, ( )  is the wavefunction and E represents the 

corresponding quantum energy levels of the QFPs. By solving QFSE, we could calculate the discrete 

QPLs which directly analogue to the energy level of the QFPs. From the perspective of the QFT, if 

there is no outside stimulus, the financial particle will remain at its own energy level and perform 

chaotic oscillation. Once there is outside stimulus, the QFPs will discretely absorb/release the 

quantized energy and jump to other QPLs. 

 In our financial forecasting problem, we take both time series price variables and the QPLs as the 

inputs since the QPL is a direct reflection corresponding to the result of price movement, which 

symbolizes the possibility and stages of the movement of financial product prices within the trading 

day. In this way, we extract the deep characteristics of price movements by calculating the QPLs and 

input it into the chaotic neural network together with the time series price variables for system training 

and next-day prediction. 

3.2. Time series to time sequence 

In order to tackle the gradient descent deadlock problem during the training period and reflect the 

intrinsic relationship among different prices and QPLs, many methods have been proposed. In our 

research, at the pre-processing phase, we do the normalization for the time series data based on the 

Lasso normalization method and the equation for normalization factor is given as follow: 

 

   
 

∑     
 
   

     (2) 

 

 After applying this normalization method to the timeseries, we reflect our two groups of feature 

values into the range between 0 and 1. In this way, we could maximize the usage of our chaotic 

activation function and its chaotic region to jump out from the local minimum which we will show in 

the following section. 

 In order to forecasting the future price movement, we train the HCONN by capturing the patterns of 

price movements in the past 2048 trading-days. Therefore, in the process of the data pre-processing, 

we spilt the time series continuously through a sliding window method shown as followed, which 

enables us to get 2038 fixed scale training samples. We take the past 9-day daily OHLC (Open, High, 

Low and Close) financial time series variables as input and predict the next day highest price and 
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lowest price because in the actual trading, daily high/low prices are commonly for reversal and 

breakout trading strategy. The working mechanism of the sliding window is given in Figure 1. 

 
Figure 1. Spilt time series into sequence based on 10-day fixed size sliding window. 

 In order to prevent the market trend influence of our model to learning the past price movement 

pattern, for example, if the market is in the bullish or bearish, the divided 10-day sequence’s pattern 

might be influence by the current market trend, and ensure that our model has sufficient generalization 

predictive ability in different market condition, we randomly choose the sequence and append it into 

the training set and testing set. In here, we follow the traditional 75% and 25% rule to construct the 

training set and testing set. 

3.3. Hybrid Chaotic Oscillatory Neural Network (HCONN) 

The structure of our chaotic neural network follows the traditional fully-connected proposed by 

Rumelhart and McClelland in 1986, which is the fundamental structure for all the neural networks but 

contains power fitting ability to the complex and non-linear data. In our Hybrid Chaotic Oscillatory 

Neural Network (HCONN), by considering with the volume of the training data, we construct an 

eight-layer based fully connected neural network containing three chaotic oscillatory layers, three 

batch normalization layers and two dropout layers, for each layer it contains 20 neurons. 

 In our HCONN, the input layer contains 102 neurons which includes two major parts: 1) 9-day time 

series data, which include Open, High, Low and Closing prices; 2) each day’s 8 nearest Quantum 

Price Levels (QPLs). The 8 hidden layers including three different types: 1) Chaotic oscillatory layer, 

2) Batch normalization layer and 3) Dropout layer. The output layer contains 2 neurons corresponding 

to the next day High/Low prices. 

 In order to solve the problem in fitting the highly random and stochastic time series data, we adopt 

the Lee-Oscillator [5] as the activation function in our HCONN. Its neural dynamics is given by: 

 (   )         (    ( )      ( )   ( )     )   (3) 

 (   )         (    ( )      ( )     )    (4) 

 (   )         ( ( ))      (5) 

 ( )  [ ( )   ( )]      
 ( )    ( )     (6) 

 Where E, I,   and L represent the Excitatory, Inhibitory, Input and Output neurons, e1, e2, i1 and i2 

are the weights,    and    are the threshold values and S(t) is the external input stimulus. By 

simulation in the Matlab program, the bifurcation diagram is shown in Figure 2.  

 
Figure 2. Bifurcation diagram of the Lee-oscillator 
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 By applying the oscillator model as the activation function, we effectively convert our traditional 

neural network into a chaotic neural network. In this kind of transformation, during the training of our 

chaotic oscillatory neural network, the chaotic region provides different degree of “hysteresis” during 

network training, which provides the ability for the network to jump out of the local minimum and to 

resolve the “deadlock” and “over-training” problems which are commonly found in traditional neural 

networks.  

 Inside the hidden layer structure, in order to fully use the chaotic region and prevent the gradient 

problem to stuck our chaotic activation function, we need to limit the input distribution of the chaotic 

neurons within the range between 0.3 to 0.7 as much as possible, by combing with the training 

acceleration technique [7], we add the batch normalization layer between each chaotic oscillatory layer. 

In addition, considering our input contains lots of feature of the time series, which are 9-day time 

series price variables and 9-day eight nearest daily quantum price levels, in order to prevent the 

overfitting problem [8], we construct the dropout layer with 0.8 as the keep probability inside the 

hidden layers. The hidden layers architecture is given in Figure 3.  

 

 
Figure 3. Architecture of the hidden layers in the HCONN. 

 Where the BN, CO, DP Layers represent the batch normalization layer, chaotic oscillatory layer and 

dropout layer respectively.  

 During system training, we use the ADAM optimizer with default learning rate 0.01 to minimize 

the cost function, which has the state-of-art performance in the deep neural network training [9]. The 

main reasons to adopt ADAM optimizer include: 1) ADAM optimizer could adjust its learning rate 

based on different parameters, which can be applied in several different models; 2) In our chaotic 

activation function, the calculation is much more complex than the traditional activation function. So, 

in order to ensure the effective usage of the neural network in the actual trading and forecasting, the 

time consuming of the training of the network should be minimize; 3) For the chaotic activation 

function, it could jump out of the local minimum because of its chaotic region and the stochastic 

gradient calculation. However, in order to prevent it from jumping out of the global minimum and 

ensure it could converge in the global minimum, we need to choose the optimizer which could adjust 

the learning rate with the process of convergence. 

4. Experimental Tests 

In this section, HCONN is evaluated in two major perspectives following the traditional deep learning 

model evaluation principle, which are 1) the accuracy of the prediction test which quantified by the 

mean square error. 2) the speed of convergence test quantified by the training epochs. In the model 

comparison, the HCONN will be compared with FFPBN and CONN (without QPLs).  



AIAAT 2019

IOP Conf. Series: Materials Science and Engineering 646 (2019) 012024

IOP Publishing

doi:10.1088/1757-899X/646/1/012024

6

 

 

 

 

 

 

4.1. Experimental data 

All the experimental data are fetched from the MetaTrader 4 forex trading platform historical data 

centre. In total, 12 forex products are used: AUDCHF (2051), AUDCHF (2051), AUDUSD (2051), 

CADCHF (2051), EURAUD (2051), EURCHF (2051), EURGBP (2051), EURUSD (2047), 

GBPAUD (1531), GBPCAD (1531), GBPUSD (2047), USDCAD (2047), USDCHF (2051), where 

numbers in () shows the number of trading-day of the timeseries being used for system training and 

testing.  

4.2. Experimental environment 

For the QPL calculation, we conduct this process in the MetaTrader 4 platform by using the MQL4 

programming language. For the data pre-processing, we conduct it in the Python 3.6, relying on the 

packages numpy and pandas. In the model construction, we develop the HCONN and its training 

comparison model CONN and FFBPN with Google tensorflow with version 1.31 which is a powerful 

framework for the machine learning research and development. In addition, for the accuracy 

comparison model including support vector machine regressor and random forest regressor, we 

construct it by using the sci-kit learn package. All the models including the HCONN and its 

comparison model are running in CPU cluster with Windows 10 operating system and Intel(R) 

Core(TM) i5-6300HQ CPU @ 2.30GHz, 2304 Mhz processor. 

4.3. Comparison model 

By following the two measurement methods which are 1) the accuracy of the prediction test which 

quantified by the mean square error. 2) the speed of convergence test quantified by the training epochs. 

In the model comparison, we evaluate and compare the three model: HCONN, CONN (without QPL) 

and FFBPN in both training set and testing set.  

4.3.1 Convergence comparison. During the convergence comparison, we plot the mean square error 

versus the training iteration for three different models to compare the speed of convergence. Due to 

the huge numerical difference during the convergence process between the 3 models, we draw a point 

representing each 5 epochs, in this way we have 300 points in the training process graph. Then we 

separate the 1500 training epochs into 3 phases define as: 1) 1 epoch to 20 epoch; 2) 21 epoch to 100 

epoch; 3) 101 epoch to 300 epoch, these three-period graphs are given in Figure 4. 
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Figure 4. Average mean square error among 12 products versus the training iteration graph in three 

period: Top) 1 epoch to 20 epoch; Middle) 21 epoch to 100 epoch; Bottom) 101 epoch to 300 epoch. 

 From these three charts, it reveals that in the early phase, FFBPN almost has the highest mean 

square error. Also, both HCONN and CONN have fast convergence speed and better global minimum 

to convergence, one of the main reasons is that for the HCONN and CONN, the chaotic oscillatory 

activation function could enable the neural network to jump out of the local minimum during the 

training process. By combing with ADAM optimizer, its learning rate will be limited in an appropriate 

range during the training process. In conclusion, the combination of the oscillatory activation function 

with ADAM optimizer is one of the best training techniques combination in the financial prediction 

question case, the oscillator enable the model to have the ability to escape from local minimum 

without too much sacrifice in the accuracy by ADAM’s mechanism. 

 In order to compare HCONN with CONN in detail, we plot the average mean of Mean-Square-

Error (MSE) for the network training of the 12 forex products versus training epoch in Figure 5, in 

which we could see that the quantum price level will accelerate the speed to convergence to the global 

minimum. But for the local minimum result, the HCONN and CONN have no significant difference 

for the training set. The detail comparison we will discuss in the accuracy comparison and analysis. 

 

 
Figure 5. HCONN and CONN comparison: Average mean square error among 12 products versus the 

training iteration graph in two period: Top) 20 epoch to 150 epoch; Bottom) 150 epoch to 300 epoch. 
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4.3.2 Accuracy comparison. For each forex product, we show the mean square error of the prediction 

in the corresponding testing set for the three models (Table 1).  

Table 1. Mean square error in each product for three models 

 AUDCHF AUDUSD CADCHF EURAUD EURCHF EURGBP 

HCONN 2.36E-06 1.81E-06 5.58E-06 1.72E-06 2.17E-05 1.72E-06 

CONN 0.00032897 0.00045184 1.87E-06 1.73E-06 1.76E-06 1.84E-06 

FFBPN 3.22E-06 0.14337366 0.01719210 4.33E-03 1.19E-03 1.18E-05 

 

EURUSD GBPAUD GBPCAD GBPUSD USDCAD USDCHF 

HCONN 2.69E-06 7.83E-06 1.02E-05 1.75E-06 1.79E-06 3.65E-05 

CONN 1.73E-06 2.53E-05 3.48E-05 4.200E-05 7.09E-05 0.00012943 

FFBPN 4.52E-03 4.77E-03 0.09754947 0.01744503 0.00107840 1.67E-06 

 

 
Figure 6. Normalized mean square comparison, each column means the proportion of three model’s 

error in a certain product, the bottom two graphs are the absolute error comparison for three models. 
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In order to illustrate the error analysis among the three forecasting models, we plot the proportion of 

three model’s error for each certain product in Figure 6 and plot the absolute error value comparison 

between HCONN and CONN in Figure 7. From the result of the normalized error analysis, we could 

see that for each product, most of the error is contributed by the FFBPN model and CONN model. By 

comparing the HCONN with two benchmarks model, we could see that for the HCONN, it contains 

the most powerful and stable ability in prediction. The accuracy difference between CONN and 

FFPBN shows that by applying the chaotic oscillatory activation, we could efficiently enable the 

neural network to fit the complex, chaotic and highly random time series patterns. In addition, the 

stability in prediction among different products show that by applying the chaotic oscillatory 

activation, the generalization ability of the neural will increase as well, which means the model could 

adapt the different product well in the market, which is important for reduction of consuming in the 

actual trading. 

 
Figure 7. Absolute mean square error comparison between HCONN and CONN. 

By comparing the MSE difference between CONN with HCONN as shown in Figure 7, it reveals 

that by applying the quantum price level as the feature extraction method the accuracy of the 

prediction can be improved significantly.  

5. Conclusion 

In this paper, we apply the Hybrid Chaotic Oscillatory Network (HCONN) which integrate chaotic 

neural network with the quantum finance theory to extract the intrinsic financial property of each 

financial product to tackle short term daily prices prediction problem. We take the past 9-day time 

series prices and quantum price levels as the input, to predict the next day highest and lowest price.  

Specially, by integrating with Lee-oscillator as the chaotic activation function with ADAM 

optimizer, the model has the more powerful ability in the convergence to the global minimum and 

training acceleration. By comparing with the original chaotic oscillatory neural network, the quantum 

price level has the significant positive contribution to minimize the loss value by extracting the deep 

feature of the financial product.   

Overall, based on the experiment result, we could see that the hybrid chaotic oscillatory neural 

network (HCONN) model could successfully extract the price movement pattern from the past chaotic, 

stochastic and complex data. Compared to other models, it has the significant ability in both the short 

term prediction accuracy but also the generalized prediction ability, which produces the reliable result 

in terms of trading analysis. 
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