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Abstract. This paper proposes a novel approach to calibrate the intrin-
sic camera parameters from a single image, which includes the silhouette
of two spheres and two ellipses generated by the intersection between the
line-structured laser light and the two spheres. This approach uses the
vanishing line of a plane and its normal direction to calculate the orthog-
onal constraints on the image of absolute conic (IAC). And this plane
is formed by the camera center and two sphere centers. In addition, the
pair of the circular points of the light plane is calculated from the gen-
eralized eigenpairs from the intersection between the light plane and the
spheres. The intrinsic parameters of the camera can then be recovered
from the derived orthogonal constraint and the pair of circular points
on the IAC. Furthermore, the 3D positions of these two sphere centers
under the camera coordinate can be recovered from the camera intrinsic
matrix and then used to evaluate the accuracy of the camera intrinsic
matrix. Experiment results on both synthetic and real data show the
accuracy and the feasibility of the proposed approach.

Keywords: Intrinsic camera calibration · The line-structure light
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1 Introduction

Camera calibration is a vital step for the task of 3D reconstruction in computer
vision or photogrammetry in machine vision. The camera intrinsic parameters
indicate the projective geometry from 3D objects under the camera coordinate to
a 2D plane under the image coordinate system. The camera extrinsic parameters
describe the rotation and translation information of a camera relative to the
world coordinate system. Many approaches have been developed according to
the dimension of the calibration objects [1], such as 3D objects [9,10,14–16], 2D
plane [5,13,20], one-dimensional objects [1], or even without calibration objects
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[10], i.e. self-calibration. Due to its high accuracy and convenience, the most
widely used calibration object is the 2D chessboard plane [13]. However, since a
single plane can only provide two linearly independent constrains on calibration,
pictures of multiple poses are required to be taken to fully calibrate the camera
intrinsic parameters. Such procedures make the process of calibration manually
cumbersome and time consuming. In order to overcome these problems, some
common objects such as spheres or surfaces of revolutions (SOR) were proposed
to replace the calibration board. In [16], the camera intrinsic parameters were
calibrated with a single image which includes at least three spheres. In [10], the
surface of revolution was used to recovering the intrinsic of a camera. Compared
with the 2D calibration patterns, the images of 3D objects such as spheres or
SOR can provide more constraints for intrinsic calibration.

Recently, these 3D calibration objects have been employed in calibrating
the system with line-structured light vision sensors [2,4,18]. In [18], four balls
placed on a flat board are used to calibrate the structured light plane. In [2], a
method with a single object was proposed to calibrate the line-structured sys-
tem. However, these methods generally involve calibrating the camera extrinsic
parameters. A 2D calibration board was required to be firstly used to recover the
intrinsic matrix in a separated step. 3D calibration objects were then introduced
to estimate the light plane parameters [2].

This paper proposes a method to calibrate the intrinsic parameters from the
intersection of a laser light plane with two spheres. Inspired by [16], the vanish-
ing line of a plane and its normal direction were derived from the eigenvectors
of the dual of the conic homograph and conic homograph generated from two
sphere silhouettes, which formed the orthogonal constraint on the IAC. Besides,
the intersection of the two spheres and the light plane form two co-planar cir-
cles. From generalized eigenvectors of their images can be broken down into
constraints on the dual conic of the circular points from generalized eigenvec-
tors. Together with the orthogonal constraints from the sphere silhouettes, the
camera intrinsic parameters can then be recovered. From the camera intrinsic,
the position of the sphere center can also be obtained.

The paper is organized as follows. Section 2 presents the fundamental theory
of the image of the absolute conic. Section 3 introduces the orthogonal constraints
from the silhouettes of two spheres. Section 4 relates the pair of circular points to
the images of the intersection circles between the line-structured light plane and
the spheres. The camera intrinsic parameters can then be estimated. Section 5
explains the process of recovering the 3D position of the sphere center. Experi-
mental results and conclusions are then given in Sects. 6 and 7, respectively.

Throughout this paper, we use italic font (e.g., f ) to represent a scale value,
and use bold font (e.g., v, M) to represent a vector or a matrix.

2 The Image of the Absolute Conic

The absolute conic (AC) was firstly introduced in camera calibration by Faugeras
et al. [6], and its projection in image is IAC which is an imaginary points conic,
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without real points lying on it. IAC is a 2D projection on the plane at infinity
which is invariant under Euclidean transformations and can be written as

ω = K−TK−1 =




ω1 ω2 ω3

ω4 ω5 ω6

ω7 ω8 ω9



 , (1)

where K is the camera intrinsic matrix

K =




αf s u0

0 f v0
0 0 1



 . (2)

Here f is the focal length, α is the aspect ratio, (u0, v0) is the principle point
and s is the skew. Generally, in order to calibrate the camera intrinsic, the image
of the absolute conic (IAC) was firstly recovered, and then the camera intrinsic
matrix K can be easily obtained by the Cholesky decomposition [7] of IAC.

3 Orthogonal Constraint from the Silhouettes of Two
Spheres

The setup of a camera and a line-structured light system is shown in Fig. 1. The
camera locates outside of the light plane. Two spheres, as the calibrate objects,
are placed in front of the camera so that they are both visible to the camera.
The line-structured light hits on both spheres and the intersection curves are
partially visible to the camera. In Fig. 1, the solid part of the intersection curves
are the visible outline to the camera, and the dashed curves are invisible part to
the light source and cannot be seen by the camera.

Let the spheres be xT Bix = 0 (i = 1, 2), x = [x y z 1]T is any point on the
spheres. Bi is a 4 × 4 matrix

Bi =
(
I3×3 −oi

−oT
i oT

i oi − r2i

)
, (3)

where the radius of the sphere is ri and the sphere center is oi. After projection,
we can get two conics C1 and C2 in the image (see Fig. 2 for details), which are
the outlines of these two spheres. These two conics are both 3 × 3 matrices and
satisfied mTCim = 0 (i = 1,2), where m = [u v 1]T .

The vanishing line l of the plane formed by the camera and the two sphere
centers can be recovered as one of the eigenvectors of the “dual of the conic
homograph” Hc [3]

Hc = C2C−1
1 , (4)
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which passes through both sphere silhouettes C1 and C2 (see Fig. 2 for details).
The other two eigenvectors are discarded since they only pass through one conic.
Note that the eigenpairs of Hc are as same as the generalized eigenpairs of (C−1

1 ,
C−1

2 ). Similarly, the vanishing point v of the plane normal can be obtained
directly as one of the eigenvectors of the “conic homograph” Hd [3]

Hd = C−1
2 C1, (5)

Fig. 1. The system setup. The two spheres B1 and B2, as the calibration objects, are
placed in front of the camera so that they are both visible to the camera. The line-
structured light hits on both spheres. The solid part of the intersection circles are the
visible outline to the camera, and the dashed curves are invisible to the light source
and cannot be seen by the camera.

which is lying outside of both conics. The other two eigenvectors are discarded
since they lie within both of the silhouettes. The orthogonal constraints between
the vanishing point v and the vanishing line l provides the pole-polar relationship
with respect to the IAC ω [3]

l = ωv. (6)

Here the point v is the pole and the line l is the polar. Thus, two linear indepen-
dent constraints on the IAC are provided by an image of two spheres. To fully
calibrate the camera we still need to find other constraints from the system.
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4 Circular Points from the Intersection Curves

Let the plane of the line-structured light in the world coordinate frame be

lTlightp = 0, (7)

where llight = [a b c d]T is the coefficient vectors of the light plane, p = [x y z 1]
is any point on this plane. The projection of the laser line onto the two spheres
is the front half of the intersection between the light plane and the two spheres,
which can be fitted to two complete conics xTD1x = 0 and xT D2x = 0 on the
image, where D1, D2 are two 3×3 matrices. Since D1 and D2 are the projection
of two co-planar circles, and intersect the vanishing line l∞ of the light plane at
two invariant conjugate complex points, which are the circular points i and j [8]
(see Fig. 3 for details). In generally, when we know the conic D1 and D2, we can
get these two intersection points by solving quadratic equations. However, the
process of solving two quadratic equations is time consuming.

Fig. 2. The vanishing line l of the plane, which is pass through the camera center and
the center of two spheres. The vanishing point v of the plane normal and vanishing line
l, satisfied the pole-polar relationship and provide two linear independent constraints
on the IAC.

In order to get the circular points i, j in a linear way, the generalized eigen-
pairs (λi,vi) (i = 1, 2, 3) of conic D1 and D2 are firstly obtained, where λi

are the eigenvalues, vi are the eigenvectors. Similar to Sect. 3, being regarded
as points, one of the eigenvectors (let it be v3) lies outside of both conics, on
the vanishing line l∞. Its corresponding eigenvalue λ3 has the smallest abso-
lute value. The other two eigenvectors (v1 and v2) lie inside of either one of
the conic D1 and D2. Secondly, each of the degenerated conic Li = D1 − λi

D2 (i = 1, 2, 3) composes two lines which can be obtained by singular value
decomposition (SVD) [17]

Li = UiSiUT
i =

(
ui1 ui2 ui3

)



si1 0 0
0 si2 0
0 0 0








uT
i1

uT
i2

uT
i3



 , (8)
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Fig. 3. Co-planer conics D1 and D2 intersect the vanishing line l∞ at two imaged cir-
cular point i and j. The pair of circular points provide the other two linear independent
constraints on the IAC.

where the diagonal matrix Si is with the singular values si1 > si2 ! 0, and the
Ui ∈ R3×3 is a orthogonal matrix. From each Si and Ui, two vectors [xi1, xi2]
≡ Ui S

1/2
i [e1 e2] can be derived, where e1=[1 0 0]T and e2=[0 1 0]sT . For the

degenerated conics L3, we can get two lines from x1, x2 passing through v3, i.e.,
{m3, n3} = {x1 + x2, x1 − x2} [17]. The vanishing line l∞ can be selected from
{m3, n3} using the fact that the two points v1 and v2 lie on both side of l∞.
Since the conic C∗

∞ (C∗
∞ = ijT + jiT ) [6] dual to the imaged circular points i

and j is a degenerate line conic (rank 2) consisting of the two circular points on
the vanishing line l∞ , l∞ lies in the null space of C∗

∞, i.e.,

C∗
∞l∞ = 0. (9)

This provides two constraints on C∗
∞. Besides, each of the other two degenerated

conics L1 and L2 composes two complex conjugate lines passing through the
circular points, which provides further constraints on C∗

∞ [17],

xT
i1C

∗
∞xi2 = 0 and xT

i1C
∗
∞xi1 − xT

i2C
∗
∞xi2 = 0 (where i = 1, 2, 3). (10)

Finally, from (9) and (10), the conic C∗
∞ dual to the imaged circular points can

be recovered and it can then be broken down to the circular points i, j by SVD.
The circular points i, j are lying on l∞ in pairs (see Fig. 3 for details), and

are also lying on the IAC [3], i.e.,

iTωi = jTωj = 0. (11)

This provides another two linear independent constraints on IAC additional to
(6). The system resulting from (6) and (11) provides four linear constraints on
ω, hence a natural camera with only four parameters, i.e., a zero skew camera,
can be recovered.
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5 The Recovery of Sphere Center 3D Position

The position of the sphere center can be estimated from the camera intrinsic
matrix. In conventional methods, triangularization is generally used to recon-
struct the position from two images captured at two different viewpoints. This
method is accurate, but exists ambiguity when decomposing the essential matrix
E, and needs at least two images and known some previous information.

To obtain the 3D position of the sphere center just from one image, we can
use the eigenpairs from the right-circular cone of spheres’ conic under camera
coordinate system. From Sects. 3 and 4, we have already know the intrinsic
matrix K and detected two spheres’ outlines Ci (i = 1, 2) from image. Then, we
can recovery the right-circle cone Qi for each sphere circle from back perspective
projection model.

Qi = KTCiK. (12)

We apply matrix decomposition on the Qi, and get eigenvectors (ei1, ei2,
ei3) together with the corresponding eigenvalues (λi1, λi2, λi3), λi1, λi2 > 0, λi3

< 0, where i = 1, 2. Once we get the measured sphere radius R, we can get the
sphere center position under the camera coordinate system from [19]

[Xi Yi Zi]
T = λ′

i [ei3] , (13)

where

λ′
i = R

√
|λi1| (|λi2|+ |λi3|)
|λi3| (|λi1|+ |λi3|)

, (i = 1, 2). (14)

6 Experiments and Results

6.1 Synthetic Data

The synthetic camera has fixed intrinsic parameters, with focal length f = 1000,
α = 1.2, s = 0, and principle point (u0, v0) = (320,240). The points on the
silhouette of each sphere and each laser ellipse are corrupted with Gaussian
noises at different levels from 0 to 5 pixels with 0.1 pixel step, and then two
conics are fitted on the noisy points [11].

The synthetic experiment is to calibrate the camera intrinsic parameters
using our proposed method under different noise levels. For each level, 100 inde-
pendent tests are carried out. And, then computing the RMS error in each noise
step. Figure 4 shows the relative error between the ground truth and RMS (root
mean square) errors of the focal length f, the aspect ratio α, and the principle
point (u0, v0). From Fig. 4, it can be seen the noise is slightly effect the four
parameters in intrinsic matrix. Even for the worst error of the principle point v0
is less than 15%.

Furthermore, we compare the proposed method with the orthogonal method
mentioned in [16]. Under the same condition, the average intrinsic matrix param-
eters is showed in Table 1. It can be seen that the result of proposed method is
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better than the orthogonal method for a natural camera. Besides, the orthogo-
nal method requires two images, which contain only the silhouettes of the two
spheres to calibrate the camera intrinsic parameters.

Fig. 4. The relative error between the RMS errors and ground truth at different noise
levels below 5 pixels with 0.1 pixel step. And for each step, 100 independent tests are
carried out. (a) The relative errors for the focal length f. (b) The relative errors for the
aspect ratio α. (c) The relative errors for u0. (d) The relative errors for v0.

To verify the correctness of the estimated camera intrinsic parameters, we
can obtain the positions of the two sphere centers and compare the estimated
distance with the ground truth value. In the synthetic experiment, the sphere
radius and the distance of sphere centers are given. Then, we also can use the
same way to assess the stability of intrinsic matrix under different noise levels.
Figure 5 shows the RMS error of the distance of two sphere centers under the
noise level below 5 pixels. We can find the distance is weakly effected by the
noise. The biggest RMS error is still below 1.00%, which means the evaluating
the accuracy of camera intrinsic parameters by sphere center distance is reliable.

6.2 Real Scene

In the real scene experiment, an image of two connected ceramic balls is taken by
an industrial camera. The setup of the real system is shown in Fig. 6(a). The two
spheres are hit by the laser light and the detected light are fit to two conics (see
Fig. 6(b) for details). The distance between these two sphere centers is 74mm.
The radius of both spheres is 12.7mm. The image resolution is 1280× 960. The
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Table 1. Estimated camera parameters by the proposed method and the orthogonal
method under the noise lever below 5 pixels.

Approach α f u0 v0

Ground truth 1.2 1000 320 240

Proposed method 1.2056 997.408 318.6277 242.0497

Error (%) 0.46 0.21 0.43 0.85

Orthogonal method (2 images) 1.1748 986.1887 322.1086 264.2599

Error (%) 2.1 1.38 0.66 10.11

Fig. 5. The relative errors between RMS error and ground truth for the sphere center
distance at each noise level. The noise level is below 5 pixels with 0.1 pixel step. And
for each step, 100 independent tests are carried out.

Canny edge detector [12] is firstly applied to find the points on the silhouette
of the spheres to which conics are fitted with a least square approach [11]. The
intersection conics between the light plane and the spheres are obtained by
the following steps. First, the Hessian matrix was used to compute the center
curve of the laser light rays in image, and then the center curve was fitted to
an ellipse with a least square approach [11]. By using proposed methods, the
estimated intrinsic parameters are then obtained and listed in Table 2. For the
purpose of comparison, the result from the classical method of Zhang [13] is
taken as the ground truth. From Table 2, we can see that the result of proposed
method is much close to the ground truth, except the vertical coordinate of the
principle points. This may due to the errors induced from the vanishing point
in (6). Compared with Zhang’s method [13], this proposed method can just use
one single image to recovery the camera intrinsic parameters linearly and get the
result almost accurate, which means the proposed method is correct and reliable.
Besides, we cannot use orthogonal method [16] to obtain the camera intrinsic
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matrix from one image which include only two spheres. Two images can provide
four linear independent constraints on the camera intrinsic parameters. Table 2
also shows the results of the proposed method and the orthogonal method based
on two same images. From the result, we can see the focal length is better
than that of the proposed method. The principle point is worse own to the
silhouettes extraction. The result of the orthogonal method is worse and own to
the vanishing point in (6) derived far away.

Fig. 6. The real scene system setup and captured image. (a) is the real scene system
setup. (b) is the captured image with extracted silhouette circles, in which the spheres
and laser light can all be seen.

Table 2. Comparison of intrinsic results in three methods

Method α f (u0, v0)

Zhang 1.00689 6659.2 (592.9, 460.6)

Proposed method 1.00035 6555.2 (594.7, 418.7)

Error(%) 0.65 1.56 (-0.3,9.1)

Proposed method (2 images) 1.0042 6565 (431.1, 398.5)

Orthogonal method (2 images) 0.99 7192.9 (241.3, 158.5)

After we get the intrinsic matrix and the sphere conics from the image,
we can use the method mentioned in Sect. 5 to estimate the distance between
the sphere centers. Please note, at this moment, the sphere center is under the
camera coordinate system. And based on the projection property, the distance
between two sphere centers will not change. Hence, we can compare the estimated
distance with the ground truth to assessment accuracy of the proposed method.
The results of the distance of the sphere centers are list in Table 3. The camera
intrinsic matrix calibrated by the proposed method is accepted. The difference
from the ground truth is caused by the silhouette and extracted laser center line.
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Table 3. Comparison of the distance of sphere centers between the estimated value
and ground truth

Estimated distance (mm) Ground truth (mm) Error (%)

74.899 74 1.21

7 Conclusion

This paper has proposed an approach to calibrate the camera intrinsic param-
eters using a single image which includes the outline of two spheres and two
ellipses generated by the intersection between the line-structured laser light plane
and the two spheres. Then, the distance of two sphere centers can be recovered
using the estimated intrinsic matrix K. For the intrinsic matrix calibration, a
plane is formed by the camera center and two sphere centers. The orthogonal
constraint on the silhouettes of two spheres can be generated from the vanishing
line of the plane and its normal direction. Besides, the pair of the circular points
of the light plane is calculated from the generalized eigenpairs from the inter-
section between the light plane and the spheres. Four linear constraints derived
from the orthogonal constraint and the pair of circular points. Thus, the cam-
era intrinsic parameters K can be recovered. Furthermore, the 3D positions of
these two sphere centers under the camera coordinate can be recovered from the
camera intrinsic matrix. After that, on the strength of the distance invariability
under the camera coordinate system, we can further obtain the distance of two
sphere centers. And then using this distance to assess the accuracy of the camera
intrinsic matrix. Both synthetic and real experiments show the feasibility of the
proposed approach.
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