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Abstract.  

This paper addresses the problem of reconstructing depth and silhouette images 

of wind turbine from its photos of multiple views using deep learning approaches, 

which aims for wind turbine blade fault diagnosis. Some previous multi-view 

based methods have extracted each photo’s silhouette and combined them into 

separate channels as the input of convolution; others use LSTM to combine a 

series of views for reconstruction. These approaches inevitably need a fixed 

number of views and the output result is divergent if the order of the input views 

is changed. So, we refer to a network, SiDeNet [3], which has a flexible number 

of input views and will not be affected by the input order. It integrates both 

viewpoint and image information from each view to learn a latent 3D shape 

representation and use it to predict the depth of wind turbine at input views. Also, 

this representation could generalize to the silhouette of unseen views. We make 

the following contributions to SiDeNet: improving the resolution of predicted 

images by deepening network structure, adopting 6D camera pose to increase the 

degrees of freedom of viewpoint to capture a wider range of views, optimizing 

the loss function of silhouette by applying weights on edge points, and 

implementing silhouette refinement with point-wise optimizing. Additionally, 

we conduct a set of prediction experiments and prove the network’s 

generalization ability to unseen views. Evaluating predicted results on a realistic 

wind turbine dataset confirms the high performance of the network on both given 

views and unseen views. 

Keywords: 3D representation, Multi-view reconstruction, Silhouette prediction, 

Depth prediction, Wind turbine dataset 

1 Introduction 

Wind energy is one of the most technologically mature and widely used renewable 

energy sources in the world. The number and usage of wind turbines has increased 

rapidly, and the frequency of accidents has also increased. At the same time, blade 

failures is the most expensive core component in wind turbines, accounting for more 
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than 20% of the total number of failures. In order to reduce the economic losses caused 

by this, new and effective wind turbine blade monitoring methods have become 

extremely important. Generally, sensors are installed on the wind turbine blade for fault 

diagnosis [22]. Due to the limitations and deficiencies of the sensor, the quality of the 

detection results mainly depends on the sensor itself and the use of the sensor, and the 

results often conflict. Therefore, the computer vision technology that does not need to 

use the sensor has received more attention. In order to obtain the 3D data of the wind 

turbine blade, researchers stick many markers on the wind turbine blade [23]. However, 

this method always takes a lot of time and requires higher image resolution and 

acquisition speed. Meanwhile, in order to diagnose the shape and status of wind turbine 

blades, we need to reconstruct it from a single or multiple photos.  

This work proposes wind turbine blade (WTB) fault diagnosis based on a real-time 

3D reconstruction system. In order to implement this system, a series of continuous 

views of the wind turbine must be generated to form a global 3D reconstruction of the 

wind turbine. Therefore, our task is to predict depth images of wind turbines from 

distinct perspectives. Due to the lack of prior knowledge, it is difficult to infer the 

concavities of the unseen views on the basis of single or multi view reconstruction. An 

alternative way to predict new unseen views is to use silhouette. Inspired by the deep 

learning network SiDeNet, we can use a variable number of views as input to predict 

the depth of a given view and the contour of a new view. The network can learn 3D 

information from single or multiple views in order to infer 3D shapes by combining the 

information of each view into global information. On this basis, SiDeNet can also be 

extended to new invisible shapes. 

We also notice that a higher resolution of predicted images can increase the clarity 

of details. And by incorporating camera pose as 6 degree of freedom parameters, the 

method can be more universality applied. As our real dataset consists of several frames 

captured in a fixed camera viewpoint, rather than multiple-view data, single-view data, 

or data that focuses on only a small range of viewpoints is collected, we conducted 

experiments related to the number of views, and revealed the importance of the rich 

viewpoints in training data to compensate for the small number of views that we 

actually collect. Finally, in order to improve the edge accuracy of the predicted 

silhouette, we apply an improved silhouette weighted loss, and implement an optimized 

silhouette edge prediction method according to PointRend [1]. Then, a system that can 

generate a series of wind turbine views is well trained and evaluated. 

Our work has the following contributions: 1) The encoder-decoder architecture and 

its loss function in SiDeNet are refined for learning 3D shapes and predicting depth and 

silhouette. 2) A dataset of complex wind turbine is synthesized, which shows that the 

learned 3D representation is sufficient for new view synthesis of a set of unseen objects 

with complex shapes and even textures. 3) By incorporating camera pose as 6 degree 

of freedom parameters, the method can be more universality applied.  

This paper is organized as follows. Section 2 introduces basic knowledge of existing 

methods of several issues related to image-based reconstruction. Section 3 presents the 

main framework of SiDeNet and our improvements. Section 4 gives the description and 

analysis of proposed dataset. The results of conducted experiments are shown and 

evaluated in Section 5 which is followed by conclusions in Section 6. 



3 

2 Related Works 

2.1 Sensors and Markers 

The fault detection of fan blades mainly relied on the use of sensors [24] and markers 

[25]. For the sensor, the detection technology was mainly based on vibration signals 

[30]. However, under complex operating conditions, the signal is not sensitive to 

surface fault detection and is susceptible to environmental factors. Another detection 

technology based on acoustic emission technology requires densely arranged sensors 

on the surface of the blade [13]. This method is often limited by the acoustic emission 

sensor, and its orientation often affects the quality of the detection results. 

Today's machine vision-based wind turbine blade detection can avoid the use of 

sensors, for example, Corten and Sabel [17] tried to use photogrammetry technology 

[18] to measure blades by presetting markers on wind turbine blades and towers. Ozbek 

[19] uses a system that includes 4 CCD cameras and a high-power flashlight to measure 

the working status of the fan through marked points. Poozesh [20] adds markers on the 

surface of the blade and uses a bunch of stereo cameras to capture its geometry. Moreno 

[21] uses a vision-based deep learning method to automatically monitor each part of 

the blade surface using a camera installed on a robotic system to detect damage. 

Combining the above methods and the existing literature, in the blade structure failure 

detection method, markers are added on the blade surface. However, these methods 

often have long detection cycles, high costs, and high camera resolution requirements. 

2.2 3D reconstruction with multi-images  

The single image method needs to apply a priori as a constraint to reconstruct 3D 

information, because the 3D shape of the model cannot be inferred from the feature 

correspondence between multiple images. For example, the prior may be class-based 

modeling for deviation from the average shape. This method was first proposed by 

Blanz and Vetter [15]. Another application is to use texture or lighting priors to recover 

various complex 3D shapes [14]. But this method that requires additional information 

as a priori is not suitable for our project. 

The self-occlusion problem can be overcome by providing multiple viewpoints. 

Several methods to integrate information from different angles are proposed. A classic 

method is that given multiple views of an object, a 3D shape can be generated by 

combining the characteristic points of these views using structure-from-motion [16]. 

Our framework based on Wiles and Zisserman's SiDeNet [3] is optimized, using max-

pooling to combine feature vectors extracted from multiple views into latent feature 

encoding, which can be used for the depth and silhouette prediction of each view. 

2.3 Silhouette 

The initial method [11] used a series of silhouette images with known camera extrinsics 

to predict the visual hull, which was achieved by using voxels in the 3D representation. 

This is an improvement over other traditional methods that take into account 

reconstruction shapes with certain geometric and photometric constraints [12]. When 
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testing constraints on shapes, they require multiple views and cannot infer an invisible 

view of the object. In our work, we construct a latent 3D representation by combining 

the encoding of multiple views. Given the input of the viewpoint information, the 

representation can be generalized to the silhouettes of the invisible part of the object. 

2.4 Depth 

The traditional depth estimation method has the problem of matching errors in scenes 

with drastic changes in lighting conditions [9]. Yao [10] proposed an end-to-end depth 

estimation framework based on deep learning, which improves the accuracy of depth 

estimation by restoring the dense structure of scenes from multiple perspectives with a 

certain degree of overlap. Chen [8] used the predicted depth information combined with 

ground truth to form a three-dimensional point cloud, and then used the 3D point cloud 

algorithm to optimize the depth regression. However, since the generation of 3D point 

clouds requires a lot of resources, we adopt a more efficient method, which is based on 

U-Net [7] and Pix2Pix [6] using 2D images for depth recovery.  

3 Proposed method 

Inspired by the architecture of SideNet, we use a framework includes two branches, 

i.e., silhouette prediction and depth prediction at given viewpoints. The 6D pose [4] of 

the wind turbine refers to the translation and rotation of the camera coordinate system 

relative to the world coordinate system, including the three rotation angles of the three 

camera directions and the camera position vector (t=[x,y,z]). 

3.1 Main Architecture 

The overall network structure is Encoder-Decoder, which is classical in U-Net, as 

shown in Fig. 1. The encoder is implemented using convolutional layers. The layer 

parameters and design are based on the encoder of the pix2pix architecture [6] and the 

U-Net architecture [7]. Given a set of images from each viewpoint, the encoder takes 

these images 𝐼𝑖  and the corresponding viewpoint parameters, including translation and 

spatial rotation (𝐼𝑖 , 𝑡𝑖 , 𝑅𝑖) as input, and then encodes them and broadcast over the 

feature channels. After convolution, the feature vector of each viewpoint is combined 

into a single latent vector x. x incorporates features from each viewpoint, including 

image and viewpoint parameters. Then through max pooling, x represents the most 

“confident” features of each viewpoint, and can be used for depth and silhouette 

prediction using the decoder. The decoder of each viewpoint depth prediction takes x 

as an input to recover the surface concavities of the object with depth 𝑑1 … 𝑑𝑁 in each 

given viewpoint, by using a transposed convolution and up-sampling layer with skip 

connections (taken from the corresponding input branch for feature reuse). The layer 

parameters also come from the pix2pix and U-Net. Similarly, the silhouette decoder 

uses x as input to predict the silhouette S at a new viewpoint (𝑡𝑖, 𝑅𝑖), with a feature 

channel broadcasting of new viewpoint information. The layers in the silhouette 

decoder are the same as those in the depth decoder without skip connections. 
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Fig. 1. The architecture of the network. Weights are shared across encoders. The blue arrows 

denote concatenation (over the feature channels). The feature vectors are combined to form a 

feature encoding (indicated by yellow blocks). 

In order to have a more flexible depth estimation, we set the convolution encoder with 

camera pose parameters with 6 degrees of freedom into two full-connect layers [5]. The 

broadcasting operation is the same as before. Specifically, we first calculate the sin and 

cos of the 3 camera rotation angles, combine them with the camera position vector (t), 

and pass them through two full-connect layers. The output is concatenated to each 

image encoder. These two layers can help reduce noise in camera poses and encourage 

the network to work well on each view. By incorporating the camera pose into the 

feature channel of the image encoder, we enable the network to learn information about 

the features of the wind turbine from specific views. 

3.2 Silhouette Refinement 

Silhouette estimation is always one of the most difficult steps in image segmentation. 

In order to obtain a good silhouette prediction, we adopt the method of PointRend [1], 

which effectively improves the accuracy of the silhouette. Basically, PointRend 

performs point-based segmentation prediction at adaptively selected locations based on 

an iterative subdivision algorithm.  

 
Fig. 2. The coarse-to-fine rendering module of PointRend is a sub-branch between the last 

layer and output image where the corresponding points are refined and inserted. This achieves 

a point-wise refinement of uncertain feature points and improves the silhouette. 
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In Fig. 2, we add a coarse-to-fine rendering module between the last up-sampling layer 

and the output result on selected feature points, while original up-sampling remains 

unchanged. The module selects a set of points (red dots) from the output feature map 

according to the adaptive subdivision algorithm and makes prediction for each point 

independently with a small MLP [2] and then inserts these predicted results to 

thecorresponding points of the output silhouette image. The result in Fig. 3 shows the 

improvement in silhouette edge clarity.  

                                  
     (a)           (b) 

Fig. 3. Improvement of predicted silhouette. (a) Silhouette without point-wise refinement. (b) 

Silhouette with point-wise refinement. The result shows that the accuracy has improved.  

3.3 Loss functions 

This section introduces the use of multi-task loss functions, using binary cross-entropy 

loss to predict silhouettes and MSE loss to predict depth. 

Depth Loss. The mean value of the difference between the target depth and the 

predicted depth is simply the absolute difference of all pixels of the target and predicted 

depth divided by the number of pixels. This operation allows the model no longer guess 

the absolute position of the object. It reduces ambiguity [3]. 

                     𝐿𝑑𝑒𝑝𝑡ℎ =  ∑ |𝑑𝑖 −  𝑑𝑖𝑔𝑡
|𝑁

𝑖=1                      (1) 

where d is the predicted depth, dgt is the ground truth of depth, N is the pixel number. 

Silhouette Loss. Silhouette is a binary mask, i.e., 0 or 1. The binary cross-entropy is 

used to represent the average error of all pixels, which is also called the error prediction 

rate of all pixels. We use an improved loss: the use of parameter can weight more on 

the edge of silhouette, so that the silhouette edge can be predicted more accurately [3]. 

𝐿𝑠𝑖𝑙 =  ∑ 𝑤𝑖,𝑗  (𝑆𝑖,𝑗
𝑔𝑡

log(𝑆𝑖,𝑗) + (1 − 𝑆𝑖,𝑗
𝑔𝑡

) log(1 −  𝑆𝑖,𝑗))   𝑖,𝑗      (2) 

𝑤𝑖,𝑗 =  {
𝑑𝑖𝑠𝑡𝑖,𝑗 , 𝑖𝑓𝑑𝑖𝑠𝑡𝑖,𝑗 ≤ 𝑇 

𝑐,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

where S is predicted silhouette, Sgt is ground truth of silhouette, i, j are position of pixel, c is 

default constant weight, T is default threshold of distance. 

3.4 Interpretability 

First, in the Encoder structure, the image is input to the convolutional layer of each 

encoder. In a certain layer, the corresponding viewpoint information composed of the 

6D camera extrinsic is encoded and broadcast over the feature channels of each input 

convoluted image. Then through the convolutional layer, the broadcast feature channel 

of the viewpoint information is integrated into the original feature channels of the 

image. At the end of each encoder, a 512x1x1 feature vector is generated. All these 
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feature vectors are concatenated into 512xNx1 feature maps (N is the number of input 

viewpoints). Then through max pooling, the largest one is selected among the 512 

mappings of size Nx1, and the output is a 512x1x1 feature vector x. x incorporates the 

largest of the N elements of each feature map, which means that it contains some 

viewpoint and image information. Among them, each viewpoint of the 512 features is 

the most important, and contains the most confident features of each viewpoint. 

Therefore, x can encode the properties of 3D shapes useful for both depth prediction 

and silhouette prediction in new views.  

Then for the decoder of depth branch, skip connections and up-sampling layers 

with transposed convolution are used for depth reconstruction. Up-sampling helps to 

restore the resolution and pixels of the image, and skip connections help to reuse the 

features of the image in the encoder and recover its information. For the silhouette 

branch, x is input together with a feature channel broadcasting of new viewpoint 

information, and starting from noise, the cost function is minimized by using binary 

cross-entropy loss. When input to the network, the reconstructed silhouette should give 

a feature vector x’ that is the same as x. This is because among the viewpoint-dependent 

features in x, those who are confident in the viewpoints close to the new viewpoint will 

be given a larger weight, and then the parameters of these related units will be updated 

through back propagation, and the most prominent features in the new poses will be 

introduced slowly, and finally a reconstructed silhouette will be obtained. 

4 Dataset 

Our work uses a series of wind turbine models to manually generate a data set. These 

models accurately simulate real wind turbines with realistic textures, including images 

and their corresponding pose information. Specifically, we align the center of the 

gravity and orientation of wind turbine itself with the world coordinate system ((0,0,0) 

represent the center coordinates), and then randomly select target points on the surface 

of a sphere with a radius of 2 centered at (0,0,0). Then images are generated with 

corresponding pose parameters.  

As for rendering, the wind turbine model is normalized to a uniform size and 5~10 

images of each wind turbine model are rendered from viewpoints uniformly and 

randomly selected within a specific range determined by the camera rotation angles and 

position vector, as the wind turbine is rotated about horizontal axis or vertical axis and 

has a variable distance from camera. In particular, the image sets of each model as data 

samples can cover the full-view of the wind turbine. These characteristics of our dataset 

help the network fully extract the information of various real turbine models from 

almost all possible views, and combine them to generate new views. In other words, 

the network parameters have been fitted to a wide range of views during training, so 
new views that may be close to the views already seen in training can be successfully 

generated in the test. 

 The dataset of wind turbine is divided into training set, validation set, and test set 

at the turbine level, and the proportions are 70%, 10%, and 20%, respectively. For each 



8 

iteration, wind turbines are randomly selected, from which a subset of the 5-10 rendered 

views are selected. 

  
      (a)                     (b)                   (c) 

Fig. 4. Example images rendered from the dataset. (a, b) The wind turbine dataset. (c) The 

wind turbine blade dataset. These examples show various wind turbine models with rich 

shapes and textures, which helps the network generalize to real datasets. 

5 Experimental results 

5.1 Improvement of Resolution 

The result of depth/silhouette prediction is shown in Fig. 6. The prediction error of the 

results of different architectures of SiDeNet is shown in Table 1. The prediction 

accuracy is high enough because compared with the ground truth, the loss of both depth 

and silhouette accurately lies in the range from 0.05 to 0.1, which is low enough for L1 

loss and binary cross entropy loss, as explained with Eq. (1) and Eq. (2). Therefore, the 

predicted images of depth/silhouette in Table. 2 show that with the loss smaller than 

0.1, the depth will have very little error on each pixel’s depth value compared with 

ground truth, and also silhouette will have a clear visual hull that is nearly the same as 

the one in ground truth because even though a few edge points are wrong predicted, 

they were refined with PointRend introduced in Section 3.   

 

Table. 1. The performance of different architectures 
Model Input/Output 

size 

Improved 

loss 

Degree of 

Freedom 

Depth error Silhouette error 

SiDeNet 2561dof 256 × 256 × 1 0.078 0.101 

SiDeNet 2561dof 256 × 256 √ 1 0.077 0.096 

SiDeNet 2566dof 256 × 256 √ 6 0.072 0.093 

SiDeNet 10241dof 1024 × 1024 √ 1 0.061 0.065 

SiDeNet 10246dof 1024 × 1024 √ 6 0.063 0.064 

Table 1 compares the performance of SiDeNet 256 and SiDeNet 1024 with 1 or 6 

degrees of freedom, as well as using an improved loss on silhouette prediction. This 

shows that although the difference in results driven by the increased degree of freedom 

is minimal, the converging speed during training is much faster because we have more 

feature variables related to the viewpoint, which helps the network encode the feature 

maps of multiple views more efficiently and perfectly. This helps to improve the 

robustness and compatibility of our multiple-view reconstruction task. In addition, 

along with the PointRend refinement, our weighted loss function improves 
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performance. In SiDeNet 1024, we increase the resolution of the input image from 256 

to 1024. This can improve the resolution of predicted result. As a result, the accuracy 

of both depth and silhouette is increased. 

5.2 The effect of the number of views 

Training with more views can predict better than training with fewer views, and since 

the network sees more viewpoints during training, this can improve the prediction of 

those unseen views which are far from the range of predictable new views from input 

viewpoints. On this basis, when testing with a smaller number of views, the network 

can make use of information learned from the additional views. It shows that using 

fewer views than training will have certain negative impacts on the silhouette of unseen 

new views, and have no effect on the depth of input views. Given the limitation of view 

number in real data set, we have to find the reduced number of views that will not 

greatly affect the prediction performance of silhouette. We completed this experiment 

by reducing the number of views in testing (6 views in initial training). The result is 

shown in Fig. 5 (a). Therefore, we know that an acceptable silhouette accuracy is 0.084 

which is with 4 views (2 views reduced). 

  
(a)                               (b) 

Fig. 5. (a) The effect of view number in testing on performance. (b) The performance of 

different viewpoint choices 

5.3 The effect of viewpoint choice of generating new views 

In order to test the viewpoint-encoding and generalization ability of SiDeNet, we 

control the viewpoint range of dataset by adjusting 6 degrees of freedom: only the 

horizontal rotation angle is changed in a range from 0◦ to 120◦ , and the other 5 degrees 

of freedom are fixed. The experimental results of silhouette prediction of different 

viewpoint choices are shown in Fig. 5 (b). It shows that the network is able to generate 

new views with high accuracy when the new viewpoint is selected near the viewpoints 

used in training (Viewpoints from 100◦~140◦). This infers that we have to broaden the 

range of views and increase the number of views during training, so that we can train a 

network with stronger generalization ability. 
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5.4 Predict Results 

Based on the above experiment, we test the trained network using a data sample that 

contains 4 input views (0◦, 60◦, 120◦, 150◦) and predict the depth images at these 4 

given views as well as the silhouette images at new unseen views (45◦, 80◦, 180◦) as 

shown in Fig. 6. which reveals that adding more views to the training will more 

accurately generate new views close to the given view. 

Viewpoint Input views Depth/Silhouette 

 

0◦ 
 

  

 

 

45◦ 

 

 

Nil 

 
 

 

60◦ 

  

 

 

80◦ 

 

 

Nil 

 
 

 

120◦ 

  

 

 

150◦ 

  

 

 

180◦ 

 

 

Nil 

 
Fig. 6. Predicted images of all available views (0◦~180◦) of a wind turbine model. For “Input 

views”, “Nil” means it is a new unseen viewpoint for silhouette prediction, otherwise there is 

an RGB image of the input view and this viewpoint is for depth prediction. 
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6 Conclusions 

This paper introduces a multi-view 3D shape reconstruction system for wind turbine 

blade fault diagnosis. We make improvements on SiDeNet, in which the view-

dependent encoders and feature combiner stimulates the network to integrate image 

information from all the input views. Therefore, the network can learn global feature 

that include the 3D shape features of all views, thereby being able to predict the depth 

of input views and generalize to the silhouette of unseen views. After verifying the 

prediction results, we obtain the following conclusions. Firstly, the increase in the 

degree of freedom of the viewpoint allows the network to take images of a wider 

viewpoint range as input, so that the shape information from more viewpoints can be 

learned, and the generalization ability of unseen views is improved. Secondly, the 

resolution increase makes the depth and silhouette images with more details. Third, the 

effectiveness of PointRend’s adaptive points selection and point-wise refinement is 

remarkable. In addition, experiments have been conducted to prove that using more 

views in training, the network can use fewer views during testing and guarantee higher 

prediction performance. The experiments have also proved that the network more 

accurately predicts the silhouette of a new view that is close to the viewpoint of the 

views in training. These reflect the correlation and continuity between the image 

features of continuous viewpoints that the network can learn, which prove the 

generalization ability of the network to predict continuous views of the turbine. Finally, 

a series of consecutive views can be generated in high definition and combined into a 

reconstructed model. 
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